Congruence, part 2

Lecture 4 Jan 31, 2021

Showing a Diophantine equation has no solution

◦ **Recall.** $a \equiv b \mod n \pmod{a-b}$ **i.e.** a - b is divisible by n

• When working *modulo* n, different integers a, b such that a - b is divisible by n will be the same for us

Q1*. Show that there are no integers a, b, c such that $a^2 + b^2 - 8c = 6$.

Solution: Work modulo 8.

* Questions taken from https://artofproblemsolving.com/community/c1902h1048955_diophantine_equations_using_congruences

Showing a Diophantine equation has no solution

• Q2. Find integers x, y that solve $x^4 - 6x^2 + 1 = 7 \times 2^y$

• Solution: Consider 4 cases (1)y = 1; (2)y = 2; (3)y = 3; $(4) y \ge 4$

In case (4), work modulo 16

A problem with products modulo n

• An important observation:

If a, b are integers and $a \times b = 0$ then one of them MUST be ZERO.

This is not always true for multiplication modulo n

(product of two <u>non-zero</u> numbers <u>modulo n</u> can be <u>zero modulo n</u>)

 \circ Example: Let n = 6, a = 2, b = 3.

 \circ Then *a*, *b* ≠ 0 modulo 6, but *a*×*b* = 2×3 ≡ 0 modulo 6

Prime numbers

\odot Prime (indecomposable) numbers.

- \circ **Definition 1**: A positive integer p > 1 is called PRIME if $p \mid ab$ implies $p \mid a$ Or $p \mid b$
- \circ **Definition 2**: A positive integer p > 1 is called PRIME if you can not write it as a product p = ab with a, b > 1
- **Prime numbers:** 2, 3, 5, 7, 11, 13, 17, 23, 29, 31, ...
- Historical notes: Many people have tried to prove formulas that generate prime numbers but ... see Here: <u>https://en.wikipedia.org/wiki/Formula_for_primes</u>

Product modulo prime numbers

 \circ Lemma. Suppose p > 1 is a PRIME number.

If $a \times b \equiv 0 \mod p$, then either $a \equiv 0 \mod p$ or $b \equiv 0 \mod p$.

○ **Proof**. $ab \equiv 0 \mod p$ means $p \mid ab$. So, by definition of prime, either $p \mid a \text{ or } p \mid b$. That means either $a \equiv 0 \mod p$ or $b \equiv 0 \mod p$.

We can actually deduce a lot more.

A Theorem

\circ **Theorem**. Suppose p > 1 is a PRIME number.

If *a* is not divisible by *p* (is not $0 \mod p$), then for every $r \in \{1, 2, \dots, p-1\}$, there is *x* such that $ax \equiv r \mod p$.

In other words for every $r \in \{1, 2, ..., p-1\}$, there is x such that the remainder of ax divided by p is r. (p|ax - r)

Proof. We use <u>Pigeonhole Principle</u> in the following way. Consider the set

$$S = \{a, 2a, 3a, \dots, (p-1)a\}$$

The set S has p - 1 elements. By the previous Lemma none of the numbers in S is equal to 0 modulo p, so it is congruent to one of $\{1, 2, \dots, p - 1\}$ (which also has p - 1 elements).

 \odot So there are two possibilities:

1) either for every
$$r \in \{1, 2, ..., p - 1\}$$
, there is $x \in \{1, ..., p - 1\}$

such that $ax \equiv r \mod p$

2) Or, by Pigeonhole Principle, there are different $x, y \in \{1, ..., p-1\}$ such that $ax \equiv ay \mod p$

If (2) happens, then $a(x - y) \equiv 0 \mod p$ while none of

a or (x - y) is divisible by *p*. We know this can not happen for prime numbers.

Consequences

- Lets discuss this theorem and its consequences in more details
- Lets take r = 1. The theorem says:

If a is not divisible by p, then there is x such that $ax \equiv 1 \mod p$

What does this really mean?

It means, in this new system of numbers, there is number whose product with a is equal to 1 (mod p).

This means x is like $\frac{1}{a}$; i.e. x is the multiplicative inverse of a.

• For this reason, we usually denote such x by a^{-1}

- What is a multiplicative inverse of 3 mod 13?

- What is a multiplicative inverse of 10 mod 23?

- Find a number *x* whose product with 4 has remainder 3 modulo 7?

- Find multiplicative inverses of all numbers mod 7 which are not divisible by 7.

More about inverse

 \circ **Theorem** (Fermat's Little Theorem) Suppose p > 1 is a PRIME number.

For every *a* we have $a^p \equiv a \mod p$.

In particular if a is not $0 \mod p$, for a^{-1} we can take $a^{-1} \equiv a^{p-2} \mod p$

Example. p = 7, $a = 3 \rightarrow a^p = 3^7 = 9^3 \times 3 \equiv 2^3 \times 3 \equiv 8 \times 3 \equiv 1 \times 3 \equiv 3 \mod 7$

Proof of Theorem. Few slides ago we showed

$$\{a, 2a, 3a, \dots, (p-1)a\} \equiv \{1, 2, 3, \dots, (p-1)\} \mod p$$

So taking products of the elements in both sets we have

$$a \times 2a \times ... \times (p-1)a \equiv 1 \times 2 \times \cdots \times (p-1) \mod p$$

i.e. $a^{p-1} \times (p-1)! \equiv (p-1)! \mod p$. We can now divide by (p-1)! and get the result.

Chinese Remainder Theorem

 \circ **Theorem** (Chinese Remainder Theorem) Let n_1, \ldots, n_k be integers greater than 1.

If the n_i are <u>pairwise coprime</u>, and if $r_1, ..., r_k$ are integers such that $0 \le r_i \le n_i$ for every i, then there is a unique integer x, such $0 \le x \le N = n_1 \times \cdots \times n_k$ and the remainder of the of x in division by n_i is r_i for every $1 \le i \le k$

 For Proof we need to discuss GCD and generalize some of the statements before. We will come back to this later.